Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis ; 23(7): 8, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37432844

RESUMO

When we look at an object, we simultaneously see how glossy or matte it is, how light or dark, and what color. Yet, at each point on the object's surface, both diffuse and specular reflections are mixed in different proportions, resulting in substantial spatial chromatic and luminance variations. To further complicate matters, this pattern changes radically when the object is viewed under different lighting conditions. The purpose of this study was to simultaneously measure our ability to judge color and gloss using an image set capturing diverse object and illuminant properties. Participants adjusted the hue, lightness, chroma, and specular reflectance of a reference object so that it appeared to be made of the same material as a test object. Critically, the two objects were presented under different lighting environments. We found that hue matches were highly accurate, except for under a chromatically atypical illuminant. Chroma and lightness constancy were generally poor, but these failures correlated well with simple image statistics. Gloss constancy was particularly poor, and these failures were only partially explained by reflection contrast. Importantly, across all measures, participants were highly consistent with one another in their deviations from constancy. Although color and gloss constancy hold well in simple conditions, the variety of lighting and shape in the real world presents significant challenges to our visual system's ability to judge intrinsic material properties.


Assuntos
Iluminação , Humanos
2.
Neural Netw ; 164: 228-244, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37156217

RESUMO

The contrast sensitivity function (CSF) is a fundamental signature of the visual system that has been measured extensively in several species. It is defined by the visibility threshold for sinusoidal gratings at all spatial frequencies. Here, we investigated the CSF in deep neural networks using the same 2AFC contrast detection paradigm as in human psychophysics. We examined 240 networks pretrained on several tasks. To obtain their corresponding CSFs, we trained a linear classifier on top of the extracted features from frozen pretrained networks. The linear classifier is exclusively trained on a contrast discrimination task with natural images. It has to find which of the two input images has higher contrast. The network's CSF is measured by detecting which one of two images contains a sinusoidal grating of varying orientation and spatial frequency. Our results demonstrate characteristics of the human CSF are manifested in deep networks both in the luminance channel (a band-limited inverted U-shaped function) and in the chromatic channels (two low-pass functions of similar properties). The exact shape of the networks' CSF appears to be task-dependent. The human CSF is better captured by networks trained on low-level visual tasks such as image-denoising or autoencoding. However, human-like CSF also emerges in mid- and high-level tasks such as edge detection and object recognition. Our analysis shows that human-like CSF appears in all architectures but at different depths of processing, some at early layers, while others in intermediate and final layers. Overall, these results suggest that (i) deep networks model the human CSF faithfully, making them suitable candidates for applications of image quality and compression, (ii) efficient/purposeful processing of the natural world drives the CSF shape, and (iii) visual representation from all levels of visual hierarchy contribute to the tuning curve of the CSF, in turn implying a function which we intuitively think of as modulated by low-level visual features may arise as a consequence of pooling from a larger set of neurons at all levels of the visual system.


Assuntos
Sensibilidades de Contraste , Percepção Visual , Humanos , Percepção Visual/fisiologia , Neurônios/fisiologia , Redes Neurais de Computação , Psicofísica , Reconhecimento Visual de Modelos/fisiologia
3.
Elife ; 112022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36511778

RESUMO

Color is a prime example of categorical perception, yet it is unclear why and how color categories emerge. On the one hand, prelinguistic infants and several animals treat color categorically. On the other hand, recent modeling endeavors have successfully utilized communicative concepts as the driving force for color categories. Rather than modeling categories directly, we investigate the potential emergence of color categories as a result of acquiring visual skills. Specifically, we asked whether color is represented categorically in a convolutional neural network (CNN) trained to recognize objects in natural images. We systematically trained new output layers to the CNN for a color classification task and, probing novel colors, found borders that are largely invariant to the training colors. The border locations were confirmed using an evolutionary algorithm that relies on the principle of categorical perception. A psychophysical experiment on human observers, analogous to our primary CNN experiment, shows that the borders agree to a large degree with human category boundaries. These results provide evidence that the development of basic visual skills can contribute to the emergence of a categorical representation of color.


Assuntos
Redes Neurais de Computação , Percepção Visual , Animais , Lactente , Humanos , Comunicação , Cor
4.
J Vis ; 22(4): 17, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35353153

RESUMO

Color constancy is our ability to perceive constant colors across varying illuminations. Here, we trained deep neural networks to be color constant and evaluated their performance with varying cues. Inputs to the networks consisted of two-dimensional images of simulated cone excitations derived from three-dimensional (3D) rendered scenes of 2,115 different 3D shapes, with spectral reflectances of 1,600 different Munsell chips, illuminated under 278 different natural illuminations. The models were trained to classify the reflectance of the objects. Testing was done with four new illuminations with equally spaced CIEL*a*b* chromaticities, two along the daylight locus and two orthogonal to it. High levels of color constancy were achieved with different deep neural networks, and constancy was higher along the daylight locus. When gradually removing cues from the scene, constancy decreased. Both ResNets and classical ConvNets of varying degrees of complexity performed well. However, DeepCC, our simplest sequential convolutional network, represented colors along the three color dimensions of human color vision, while ResNets showed a more complex representation.


Assuntos
Percepção de Cores , Visão de Cores , Humanos , Iluminação , Estimulação Luminosa , Células Fotorreceptoras Retinianas Cones
5.
Sci Rep ; 11(1): 1395, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446756

RESUMO

Haptic exploration usually involves stereotypical systematic movements that are adapted to the task. Here we tested whether exploration movements are also driven by physical stimulus features. We designed haptic stimuli, whose surface relief varied locally in spatial frequency, height, orientation, and anisotropy. In Experiment 1, participants subsequently explored two stimuli in order to decide whether they were same or different. We trained a variational autoencoder to predict the spatial distribution of touch duration from the surface relief of the haptic stimuli. The model successfully predicted where participants touched the stimuli. It could also predict participants' touch distribution from the stimulus' surface relief when tested with two new groups of participants, who performed a different task (Exp. 2) or explored different stimuli (Exp. 3). We further generated a large number of virtual surface reliefs (uniformly expressing a certain combination of features) and correlated the model's responses with stimulus properties to understand the model's preferences in order to infer which stimulus features were preferentially touched by participants. Our results indicate that haptic exploratory behavior is to some extent driven by the physical features of the stimuli, with e.g. edge-like structures, vertical and horizontal patterns, and rough regions being explored in more detail.

6.
Vision Res ; 173: 61-76, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32480109

RESUMO

The ultimate goal of neuroscience is to explain how complex behaviour arises from neuronal activity. A comparable level of complexity also emerges in deep neural networks (DNNs) while exhibiting human-level performance in demanding visual tasks. Unlike in biological systems, all parameters and operations of DNNs are accessible. Therefore, in theory, it should be possible to decipher the exact mechanisms learnt by these artificial networks. Here, we investigate the concept of contrast invariance within the framework of DNNs. We start by discussing how a network can achieve robustness to changes in local and global image contrast. We used a technique from neuroscience-"kernel lesion"-to measure the degree of performance degradation when individual kernels are eliminated from a network. We further compared contrast normalisation, a mechanism used in biological systems, to the strategies that DNNs learn to cope with changes of contrast. The results of our analysis suggest that (i) contrast is a low-level feature for these networks, and it is encoded in the shallow layers; (ii) a handful of kernels appear to have a greater impact on this feature, and their removal causes a substantially larger accuracy loss for low-contrast images; (iii) edges are a distinct visual feature within the internal representation of object classification DNNs.


Assuntos
Sensibilidades de Contraste/fisiologia , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Percepção Visual/fisiologia
7.
J Opt Soc Am A Opt Image Sci Vis ; 35(4): B231-B238, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29603980

RESUMO

The colors of two surfaces might appear exactly alike under one illuminant while varying under others. This is due to the metamerism phenomenon in which physically distinct reflectance spectra result in identical cone photoreceptor excitations. The existence of such metameric pairs can potentially cause great ambiguities for our visual perception by challenging phenomena such as color constancy. We investigated frequency and magnitude of metamerism in a wide range of scenarios by studying a large set of surface reflectance spectra illuminated under numerous natural and artificial sources of light. Our results extend previous studies in the literature by demonstrating that metamers are indeed relatively infrequent. Potentially troublesome cases in which two surfaces with an identical color under one illuminant appear very differently under a second illuminant are exceedingly rare. We used the frequency of metameric pairs in combination with non-metric multidimensional scaling to establish a new representation of illuminants based on metamerism. This approach imposes a systematic structure onto the representation of illuminants and allows to better prognosticate the likelihood of metamers under new illuminants.

8.
IEEE Trans Pattern Anal Mach Intell ; 40(9): 2081-2094, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28922115

RESUMO

The problem of removing illuminant variations to preserve the colours of objects (colour constancy) has already been solved by the human brain using mechanisms that rely largely on centre-surround computations of local contrast. In this paper we adopt some of these biological solutions described by long known physiological findings into a simple, fully automatic, functional model (termed Adaptive Surround Modulation or ASM). In ASM, the size of a visual neuron's receptive field (RF) as well as the relationship with its surround varies according to the local contrast within the stimulus, which in turn determines the nature of the centre-surround normalisation of cortical neurons higher up in the processing chain. We modelled colour constancy by means of two overlapping asymmetric Gaussian kernels whose sizes are adapted based on the contrast of the surround pixels, resembling the change of RF size. We simulated the contrast-dependent surround modulation by weighting the contribution of each Gaussian according to the centre-surround contrast. In the end, we obtained an estimation of the illuminant from the set of the most activated RFs' outputs. Our results on three single-illuminant and one multi-illuminant benchmark datasets show that ASM is highly competitive against the state-of-the-art and it even outperforms learning-based algorithms in one case. Moreover, the robustness of our model is more tangible if we consider that our results were obtained using the same parameters for all datasets, that is, mimicking how the human visual system operates. These results suggest a dynamical adaptation mechanisms contribute to achieving higher accuracy in computational colour constancy.


Assuntos
Algoritmos , Cor , Simulação por Computador , Modelos Neurológicos , Córtex Visual/fisiologia , Humanos , Neurônios/citologia , Córtex Visual/citologia
9.
PLoS One ; 11(3): e0149538, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26954691

RESUMO

The segmentation of visible electromagnetic radiation into chromatic categories by the human visual system has been extensively studied from a perceptual point of view, resulting in several colour appearance models. However, there is currently a void when it comes to relate these results to the physiological mechanisms that are known to shape the pre-cortical and cortical visual pathway. This work intends to begin to fill this void by proposing a new physiologically plausible model of colour categorization based on Neural Isoresponsive Colour Ellipsoids (NICE) in the cone-contrast space defined by the main directions of the visual signals entering the visual cortex. The model was adjusted to fit psychophysical measures that concentrate on the categorical boundaries and are consistent with the ellipsoidal isoresponse surfaces of visual cortical neurons. By revealing the shape of such categorical colour regions, our measures allow for a more precise and parsimonious description, connecting well-known early visual processing mechanisms to the less understood phenomenon of colour categorization. To test the feasibility of our method we applied it to exemplary images and a popular ground-truth chart obtaining labelling results that are better than those of current state-of-the-art algorithms.


Assuntos
Algoritmos , Percepção de Cores/fisiologia , Simulação por Computador , Modelos Neurológicos , Córtex Visual/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...